Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules
نویسندگان
چکیده
An investigation of the photoinduced fluorescence enhancement (PFE) behavior of CdSe/ZnS core/shell quantum dots deposited at low densities, under anhydrous and controlled water humidity, under oxygen or argon, is presented. The photoluminescence properties of CdSe/ZnS QDs are highly dependent upon the local gaseous environment. Under anhydrous conditions, under either oxygen or argon, there was no observed PFE, even though there were remarkable differences in the photoluminescence spectra. Under argon, (i) the initial photoluminescence properties are independent of humidity level; however, (ii) the PFE effect observed is highly dependent on the environmental humidity levels. Under oxygen, (i) the initial photoluminescence properties (spectra and yield) are dependent on humidity levels and (ii) the PFE effect observed is highly dependent on the humidity levels. Comparing D2O versus H2O humidity level effects on the photoluminescence properties of CdSe/ZnS QDs provides evidence for a water-molecule-stabilized state that facilitates luminescence processes. The products of CdSe/ZnS QDs exposed under a humid oxygen environment were evaluated by X-ray photoelectron spectroscopy. Oxidation of both the CdSe core and the ZnS shell was established. Oxidation of the ZnS shell is suggested to be a result of reaction with peroxide products resulting from the oxygen radical anion. These results highlight the important sensitivity of QDs to water and prove the existence of competing electronic and chemical effects on different time scales.
منابع مشابه
Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions
Enhancement of the photoluminescence (PL) of colloidal CdSe and (core)shell (CdSe)ZnS quantum dots has been observed when the dots are illuminated above the band-gap energy. The effect occurs in dots suspended in a variety of organic or aqueous environments. During periods of constant illumination, the exciton PL quantum yield was found to reach a value of up to 60 times that of the solution of...
متن کاملP-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice
Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...
متن کاملHigh efficiency silicon nanodisk laser based on colloidal CdSe/ZnS QDs
INTRODUCTION Using colloidal CdSe/ZnS quantum dots in the submicron-sized silicon disk cavity, we have developed a visible wavelength nanodisk laser that operates under extremely low threshold power at room temperature. METHODS Time-resolved photoluminescence (PL) of QDs; nanodisk by e-beam lithography. RESULTS Observation of lasing action at 594 nm wavelength for quantum dots on a nanodisk...
متن کاملA comparative study about toxicity of CdSe quantum dots on reproductive system development of mice and controlling this toxicity by ZnS coverage
Objective(s): Medicinal benefits of quantum dots have been proved in recent years but there is little known about their toxicity especially in vivo toxicity. In order to use quantum dots in medical applications, studies ontheir in vivo toxicity is important. Materials and Methods:CdSe:ZnS quantum dots were injected in 10, 20, and 40 mg/kg doses to male mice10 days later, mice were sacrificed ...
متن کاملThe Role of Intrinsic and Surface States on the Emission Properties of Colloidal CdSe and CdSe/ZnS Quantum Dots
Time Resolved Photoluminescence (TRPL) measurements on the picosecond time scale (temporal resolution of 17 ps) on colloidal CdSe and CdSe/ZnS Quantum Dots (QDs) were performed. Transient PL spectra reveal three emission peaks with different lifetimes (60 ps, 460 ps and 9–10 ns, from the bluest to the reddest peak). By considering the characteristic decay times and by comparing the energetic se...
متن کامل